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The Rotary Inverted Pendulum (RIP), is a well-known test platform to verify a
control theory

I static instability.

I significant real-life applications.

For the swing-up and stabilizing control of the RIP, a variety of control
methods had been applied :

I Proportional-Integral-Derivative (PID)

I Linear Quadratic Regulator (LQR)

I Particle Swarm Optimization (PSO)

I Genetic Algorithms (GA)

I Ant Colony Optimization (ACO)

I Fuzzy logic control

I H-∞ control

I Sliding mode control
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Lyapunov control method is a simple method of designing controls :
I Energy function can be selected as Lyapunov function and used

Lyapunov direct method to stabilize RIP1 2.
I Energy function considered the physical system and was

constructed from physical standpoint.
I Application is confined to the considered physical system.

I Instead of energy function, a logarithmic function is constructed
as Lyapunov function and the controls are designed to stabilize
RIP by Lyapunov method.

I Construct Lyapunov function from mathematical standpoint.
I Applicable to not only RIP but also the other physical systems.

1 C. Aguilar-Ibanez, M. Suárez-Castanón and O. Gutiérres-Frias, The direct Lyapunov method for the stabilization of the
Furuta pendulum, International Journal of Control, Vol.83, No.11, 2285-2293, 2010.

2T. Türker, H. Görgün and G. Cansever, Lyapunov’s direct method for stabilization of the Furuta pendulum, Turkish Journal
of Electrical Engineering & Computer Sciences, Vol.20, No.1, 99-110, 2012.
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The RIP is composed of a rotating arm driven by a motor, and a
pendulum mounted on arm’s rim, whose structure is shown in Figure 1.
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Figure 1: Schematic Diagram of RIP
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By applying Newton method or Lagrange method, one can get the
nonlinear mathematical model of RIP :{ (

Jeq +mr2
)

θ̈ +mlr sin(α) α̇2−mlr cos(α) α̈ = T−Bqθ̇
4
3 ml2α̈−mlr cos(α) θ̈ −mglsin(α) = 0

(1)

where, V is voltage, T is the torque and given as

T = ηmηgKtKg
V−KgKmθ̇

Rm
(2)
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The parameters in (1) and (2) are described as the Table.

Parameter Description
Jeq Moment of inertia at the load
m Mass of pendulum arm
r Rotating arm length
l Length to pendulum?s center of mass
g Gravitational constant

Bq Viscous damping coefficient
Kt Motor torque constant
Kg System gear ratio
Km Back-EMF constant
Rm Armature resistance
ηm Motor efficiency
ηg Gear efficiency
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For small θ and α , cos(α)≈ 1 and sin(α)≈ α . Placing the
approximate expressions into (1) and solving (1), the state space
model of RIP can be written as{

ẋ = Ax+Bu
y = Cx+Du

(3)

where x =
[

θ α θ̇ α̇
]T

, u is input voltage V , while

A =


0 0 1 0
0 0 0 1
0 bd

E − cG
E 0

0 ad
E −bG

E 0

 ,B =


0
0

c ηmηgKtKg
RmE

b ηmηgKtKg
RmE


C = diag(1,1,1,1) ,D =

[
0 0 0 0

]T
a = Jeq +mr2,b = mlr,c = 4

3 ml2,d = mgl,G =
ηmηgKtKmK2

g+BRm

Rm
,

E = ac−b2
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Obviously, vertically upward position (α = 0) and vertically downward
position (α = π) of pendulum are all equilibrium position for a fixed θ ,
i.e. the system (3) has more than one equilibrium states. In order to
solve this problem, the status feedback technique is used to make the
system (3) only one equilibrium state (α = 0,θ = 0).

B C

D

A

-K

x(t)r(t)

u(t)

y(t)

Figure 2: Block Diagram of Status Feedback
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If the feedback control is noted as r, then (3) becomes
ẋ = (A−BK)x+Br

= Ãx+Br
y = (C−DK)x+Dr

= C̃x+Dr

(4)

where, K is the gain vector of state feedback and
r = u+Kx = V +Kx.

The aim of this paper is to design feedback control r (i.e. u) based on
Lyapunov stability theorem so that the RIP can be stabilized at the
position α = 0,θ = 0 from arbitrary initial position.
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The motivations of using Lyapunov method are:

I The procedure of designing controls is simple.

I The analytic expression of controls can be obtained.

I The controls designed by Lyapunov method can guarantee the
system stability.

Based on Lyapunov stability theorem, the controls can be designed by
Lyapunov method as follow:

1 Construct a function V (x, t) which satisfies the conditions of
Lyapunov function.

2 Calculate the first derivative of V (x, t) for time V̇ (x, t).
3 Design controls to make V̇ (x, t)≤ 0 and ’=’ holds if and only if

x = xe.
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Usually, quadratic function Vq is selected as Lyapunov function, i.e.

Vq (x, t) = xTPx (5)

where, P is non-negative matrix.
In order to obtain higher numerical accuracy and faster convergence
speed, a logarithmic function Vl from quadratic function is selected as
Lyapunov function, i.e.

Vl (x, t) = ln
(
1+ xTPx

)
(6)
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Numerical value between Vl and Vq

The Taylor expansion of Vl (x, t) is

Vl (x, t) = ln
(
1+ xTPx

)
=

∞

∑
n=1

(−1)n+1

n

(
xTPx

)n

= xTPx− 1
2
(
xTPx

)2
+

1
3
(
xTPx

)3−·· ·

from which on cen see that Vq (x, t) is the first item of the Taylor
expansion of Vl (x, t), while Vl (x, t) contains quadratic term, cubic
term and higher order terms of xTPx relative to Vq (x, t). Thus, Vl (x, t)
has a higher numerical accuracy than Vq (x, t).
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Convergence speed between Vl and Vq

Let X = xTPx≥ 0, then

Vq

Vl
=

X
ln(1+X)

,
V̇q

V̇l
=

1
ξ
= 1+X

Construct a function as

f1 (X) =
Vq

V̇q
− Vl

V̇l
=

X
(1+X) V̇l

− ln(1+X)

V̇l
=

1
V̇l

f̃1 (X) (7)

If f2 (Γ) = f̃1 (X) = Γ−1
Γ
− ln(Γ) with Γ = 1+X≥ 1, then

ḟ2 (Γ) =−
Γ−1

Γ2 < 0

which means f2 (Γ) is a monotone decreasing function, and
max(f2 (Γ)) = f2 (1) = 0 = max

(
f̃1 (0)

)
thereby,

f̃1 (X)≤max
(
f̃1 (X)

)
= f̃1 (0) = 0
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Convergence speed between Vl and Vq

Vl is the constructed Lyapunov function, so V̇l (x, t)≤ 0 for x 6= 0
through designing controls. Taking into account (7), one can get that

f1 (X)> 0 for X 6= 0

which means Vq

V̇q
> Vl

V̇l
for x 6= 0, namely Vl has faster convergence

speed than Vq.

Through the above analysis, Vl has higher numerical accuracy and
faster convergence speed than Vq, so the controls of stabilizing RIP
are designed based on Vl.
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In order to design the controls under the condition of V̇l (x, t)≤ 0 at
any time, we need calculate the first order time derivative of Vl (x, t)

V̇l (x, t) =
1

1+ xTPx

(
ẋTPx+ xTPẋ

)
=

1
1+ xTPx

(
xT
(
ÃTP+PÃ

)
x

+
(
BTPx+ xTPB

)
r

)
=

1
1+ xTPx

(
xT (ÃTP+PÃ

)
x+2xTPBr

)
= ξ M+ξ Nr

(8)

where, M = xT
(
ÃTP+PÃ

)
x, N = 2xTPB.

To ensure V̇l (x, t)≤ 0, the feedback control is designed as

r = rl =−
M
N
− k ·ξ ·N,k > 0 (9)

Placing (9) into (8), it is easily get that

V̇l (x, t) =−k(ξ N)2 ≤ 0 for x 6= 0
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Similarly, the first order time derivative of Vq (x, t) is

V̇q (x, t) = ẋTPx+ xTPẋ

= M+Nu
(10)

and the control is designed as

r = rq =−
M
N
− kN,k > 0 (11)

so that V̇q (x, t) =−kN2 ≤ 0 for x 6= 0.

Comparing (9) and (11), the first items of rl and rq are the same while
the second item of rl contain parameter ξ and rq doesn’t contain ξ .
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Two experiments are used to investigate the control rl :

I The initial position of RIP is set to x0 =
[

1 π 1 0
]T

, which
verifies that rl can make the pendulum from vertically downward
position to vertically upward position.

I The initial position of RIP is set to x0 =
[

1 1 1 0
]T

, and rl

and rq are used to stabilize RIP, respectively, then the control
performances of rl and rq are compared.
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The values of the parameters are given in Table 1.

Table 1: Values of Physical Parameters

Jeq 0.0033 m 0.125 r 0.215
l 0.1675 g 9.81 Bq 0.0040

Kt 0.0077 Kg 70 Km 0.0077
Rm 2.6 ηm 0.69 ηg 0.90

Substituting the values into A and B in (3), then the eigenvalues of A
are {0,−17.8671,7.5266,−4.9783} which means A is singular and
the system (3) is unstable with more than one equilibrium states due to
zero eigenvalue and positive eigenvalues.
The rank of Uc =

[
B AB A2B A3B

]
is 4, which means the

system is controllable. By applying state feedback, the system is
controllable, stable and has only one equilibrium state.
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The key of state feedback is to calculate the gain vector or matrix K. In
this section, the desired closed-loop poles are set to
{−1,−2,−3+3i,−3−3i}, then the closed-loop characteristic
equation is

f (s) = (s+1)(s+2)(s+3−3i)(s+3+3i)

= s4 +9s3 +38s2 +66s+36

so
f (A) = A4 +9A3 +38A2 +66A+36I

Then, the gain vector K can be calculated as

K =
[

0 0 0 1
]

U−1
c f (A)

=
[
−0.0307 4.7360 −0.6264 0.4086

] (12)
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The initial state of RIP is set to x0 =
[

1 π 1 0
]T

, while the final

state is xf =
[

0 0 0 0
]T

. The control rl in (9) is used to achieve
this control task, in which the parameters are

k = 0.1,

P =


1.6090 −8.5878 0.7694 −1.4376
−8.5878 147.8866 −11.3186 25.1413
0.7694 −11.3186 0.9806 −1.9023
−1.4376 25.1413 −1.9023 4.4263

 (13)

where P is calculated by solving the Lyapunov equation
ATP+PA =−I.
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The experiment results are shown in Figure 3.
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Figure 3: Results of Stability Control for Vertically Downward Initial State
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Let x0 =
[

1 1 1 0
]T

, xf =
[

0 0 0 0
]T

, k in rl and rq are
0.1 and 0.0009, respectively. The results are shown in Figure 4 and 5.
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Figure 4: Results of Comparative Experiments
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Figure 5: Results of Comparative Experiments (cont.)
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I The logarithmic function has higher numerical accuracy and
faster convergence speed than quadratic function.

I The control designed can also achieve the swing-up control of
RIP.

I Further works
I Lyapunov control method is applicable to nonlinear system, so the

nonlinear mathematical model of RIP can be considered as the
controlled system, and the stabilizing control laws are designed by
Lyapunov method.

I The robustness analyses in theory should be researched.
I The constructed logarithmic function can be used in other control

methods, such as the performance function in optimal control.
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Thank you for your attention!
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Q&A
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