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Introduction
®0

The Rotary Inverted Pendulum (RIP), is a well-known test platform to verify a
control theory

> static instability.

> significant real-life applications.
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The Rotary Inverted Pendulum (RIP), is a well-known test platform to verify a
control theory

> static instability.

> significant real-life applications.

For the swing-up and stabilizing control of the RIP, a variety of control
methods had been applied :

» Proportional-Integral-Derivative (PID)
» Linear Quadratic Regulator (LQR)

» Particle Swarm Optimization (PSO)
> Genetic Algorithms (GA)

» Ant Colony Optimization (ACO)

» Fuzzy logic control

> H-co control

» Sliding mode control
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Lyapunov control method is a simple method of designing controls :
» Energy function can be selected as Lyapunov function and used
Lyapunov direct method to stabilize RIP' 2,
» Energy function considered the physical system and was
constructed from physical standpoint.
» Application is confined to the considered physical system.

1 C. Aguilar-lbanez, M. Suarez-Castanén and O. Gutiérres-Frias, The direct Lyapunov method for the stabilization of the
Furuta pendulum, International Journal of Control, Vol.83, No.11, 2285-2293, 2010.

2'[ Ttrker, H. Gorgiin and G. Cansever, Lyapunov’s direct method for stabilization of the Furuta pendulum, Turkish Journal
of Electrical Engineering & Computer Sciences, Vol.20, No.1, 99-110, 2012.
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Lyapunov control method is a simple method of designing controls :

» Energy function can be selected as Lyapunov function and used
Lyapunov direct method to stabilize RIP' 2,
» Energy function considered the physical system and was
constructed from physical standpoint.
» Application is confined to the considered physical system.

» Instead of energy function, a logarithmic function is constructed
as Lyapunov function and the controls are designed to stabilize
RIP by Lyapunov method.

» Construct Lyapunov function from mathematical standpoint.
» Applicable to not only RIP but also the other physical systems.

1 C. Aguilar-lbanez, M. Suarez-Castanén and O. Gutiérres-Frias, The direct Lyapunov method for the stabilization of the
Furuta pendulum, International Journal of Control, Vol.83, No.11, 2285-2293, 2010.

2'[ Ttrker, H. Gorgiin and G. Cansever, Lyapunov’s direct method for stabilization of the Furuta pendulum, Turkish Journal
of Electrical Engineering & Computer Sciences, Vol.20, No.1, 99-110, 2012.
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The RIP is composed of a rotating arm driven by a motor, and a
pendulum mounted on arm’s rim, whose structure is shown in Figure 1.

Figure 1: Schematic Diagram of RIP
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By applying Newton method or Lagrange method, one can get the
nonlinear mathematical model of RIP :

(Jeg +mr?) 6 +mirsin () &> — mircos (o) & = T — B,6 )
%mlzd —mlrcos (o) 6 —mglsin (o) =0
where, V is voltage, T is the torque and given as
V — K,K;,0
T= nmngKtKgRi (2)
m
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The parameters in (1) and (2) are described as the Table.

Parameter | Description

Jeq Moment of inertia at the load
m Mass of pendulum arm
r Rotating arm length
l Length to pendulum?s center of mass
g Gravitational constant
B, Viscous damping coefficient
K; Motor torque constant
K, System gear ratio
K, Back-EMF constant
R, Armature resistance
N Motor efficiency
un Gear efficiency
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For small 6 and o, cos (o) ~ 1 and sin () ~ a. Placing the
approximate expressions into (1) and solving (1), the state space
model of RIP can be written as

X=Ax+Bu
y=Cx+Du

wherex=[6 a 6 « ]T, u is input voltage V, while

00 1 0 0
0 0 0 1 0

A= bd cG 7B = MmN KiK,
0% —% 0 C Ry

d bG mNe KK,

0§ o s

C=diag(1,1,1,1),D=[0 0 0 0]"

K,K,nK*+BR
a=Jeg+mr’,b=mir,c = iml,d=mgl,G= nmngtR#’
m

E =ac—b*
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Obviously, vertically upward position (o = 0) and vertically downward
position (@ = 1) of pendulum are all equilibrium position for a fixed 6,
i.e. the system (3) has more than one equilibrium states. In order to
solve this problem, the status feedback technique is used to make the
system (3) only one equilibrium state (¢ = 0,6 = 0).

1[([) :E 1
—r(t e d——— 33— [ o f—3 0

Figure 2: Block Diagram of Status Feedback
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If the feedback control is noted as r, then (3) becomes

i=(A—BK)x+Br
= Ax+Br

y=(C—DK)x+ Dr
= Cx+Dr

where, K is the gain vector of state feedback and
r=u+Kx=V+Kx.
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If the feedback control is noted as r, then (3) becomes

i=(A—BK)x+Br
= Ax+Br

y=(C—DK)x+ Dr “)
= Cx+Dr

where, K is the gain vector of state feedback and
r=u+Kx=V+Kx.

The aim of this paper is to design feedback control r (i.e. u) based on
Lyapunov stability theorem so that the RIP can be stabilized at the
position & = 0,8 = 0 from arbitrary initial position.
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Q Design of Controls
@ Construction of Lyapunov Function
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The motivations of using Lyapunov method are:
» The procedure of designing controls is simple.
» The analytic expression of controls can be obtained.

» The controls designed by Lyapunov method can guarantee the
system stability.
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The motivations of using Lyapunov method are:
» The procedure of designing controls is simple.
» The analytic expression of controls can be obtained.

» The controls designed by Lyapunov method can guarantee the
system stability.

Based on Lyapunov stability theorem, the controls can be designed by
Lyapunov method as follow:

@ Construct a function V (x,¢) which satisfies the conditions of
Lyapunov function.

@ Calculate the first derivative of V (x, 1) for time V (x,1).

@ Design controls to make V (x,7) < 0 and =" holds if and only if
X = X,.
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Usually, quadratic function V, is selected as Lyapunov function, i.e.
V, (x,1) =x"Px (5)

where, P is non-negative matrix.

In order to obtain higher numerical accuracy and faster convergence
speed, a logarithmic function V; from quadratic function is selected as
Lyapunov function, i.e.

Vi(x,t) =In(1+x"Px) (6)
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The Taylor expansion of V; (x,?) is

Vi(x,t) =In (1+x"Px)

-y U ey
n=1 n

1 1
=x"Px— 3 (xTPx)2 +3 (xTPx)3 —
from which on cen see that V, (x, 1) is the first item of the Taylor
expansion of V; (x,), while V; (x,7) contains quadratic term, cubic
term and higher order terms of x” Px relative to V,, (x,t). Thus, V; (x,1)
has a higher numerical accuracy than V, (x, 1).
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Let X = xTPx > 0, then
vV, X vV, 1

——=——\ S =—-=1+X
Vi In(1+X)" v, & +
Construct a function as
V, V X In(1+X 1-
X)) =t—— = — — (~ ):-*I(X) (7)
Vq \% (1+X)V1 Vi \%}
i) =AX) = —In(C) with'=1+X > 1, then
. r-1
fz(r):— 2 <0

which means f> (') is a monotone decreasing function, and
max (f> () = f2 (1) = 0 = max (f; (0)) thereby,

fi (X) <max (fi (X)) =/ (0) =0
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V, is the constructed Lyapunov function, so V; (x,t) < 0 for x # 0
through designing controls. Taking into account (7), one can get that

fi(X)>0 for X#0

which means % > % for x £ 0, namely V; has faster convergence
q
speed than V,.

Jie WEN, Yuanhao SHI, Xiaonong LU

Stabilizing a Rotary Inverted Pendulum Based on Lyapunov Stability Theorem



Introduction Vlathematical Model of RIP Design of Controls

000000

V, is the constructed Lyapunov function, so V; (x,t) < 0 for x # 0
through designing controls. Taking into account (7), one can get that

fi(X)>0 for X#0

which means % > % for x £ 0, namely V; has faster convergence
q
speed than V,.

Through the above analysis, V; has higher numerical accuracy and
faster convergence speed than V,, so the controls of stabilizing RIP
are designed based on V.
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@ Design of Controls
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In order to design the controls under the condition of V; (x,¢) < 0 at
any time, we need calculate the first order time derivative of V; (x,)

Vi(x,1) = (+"Px+x"Px)

1+ xTPx
1 ( xr (ATP—l—PA)x >

T 1+aTPx \ + (B"Px+x"PB)r (8)

1 T (AT A T
=EM +ENr
where, M = x” (ATP+ PA) x, N = 2x" PB.
To ensure V; (x,t) < 0, the feedback control is designed as
M

r:rlz—ﬁ—k-é-N,k>O 9)

Placing (9) into (8), it is easily get that
Vi(x,1) = —k(EN)* <0 for x#0
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Similarly, the first order time derivative of V, (x,?) is

V, (x,1) = x" Px+x" Px

(10)
=M+ Nu

and the control is designed as
M
=r,=—— —kN,k>0 11
r=ry N ; (1)

so that V,, (x,1) = —kN* < 0 for x # 0.
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Similarly, the first order time derivative of V, (x,?) is

V, (x,1) = x" Px+x" Px
=M + Nu

and the control is designed as
M
=r,=———kN,k>0 11
r=ry N ; (1)
so that V,, (x,1) = —kN* < 0 for x # 0.

Comparing (9) and (11), the first items of r; and r, are the same while
the second item of r; contain parameter & and r4 doesn’t contain E.
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Two experiments are used to investigate the control r; :

> The initial position of RIP is settoxy=[ 1 7 1 0 ]", which
verifies that r; can make the pendulum from vertically downward
position to vertically upward position.

» The initial position of RIP is set to xy = [ 1 110 ]T, and r;
and r, are used to stabilize RIP, respectively, then the control
performances of r; and r, are compared.
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Q Experiments
@ System Parameter Settings
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The values of the parameters are given in Table 1.

Table 1: Values of Physical Parameters

Jog ] 00033 [ m | 0125 r | 0.215
[ | 01675 ¢ | 9.81 | B, | 0.0040
K, | 0.0077 | K, | 70 | K,, | 0.0077

R,| 26 |n.| 069 | n, | 0.90

Substituting the values into A and B in (3), then the eigenvalues of A
are {0,—17.8671,7.5266,—4.9783} which means A is singular and
the system (3) is unstable with more than one equilibrium states due to
zero eigenvalue and positive eigenvalues.

Therankof U, = [ B AB A’B A’B | is 4, which means the
system is controllable. By applying state feedback, the system is
controllable, stable and has only one equilibrium state.
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The key of state feedback is to calculate the gain vector or matrix K. In
this section, the desired closed-loop poles are set to
{—1,-2,-3+3i,—3 —3i}, then the closed-loop characteristic
equation is
fls)=(+1)(s+2)(s+3—-3i)(s+3+3i)
= 5s* 495> 4+ 385% + 665+ 36

SO
f(A) =A*+9A% +38A% + 664 + 361

Then, the gain vector K can be calculated as

K=[0 0 0 1]U'f(A)

(12)
— [ —0.0307 4.7360 —0.6264 0.4086 |
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@ Stability Control for Vertically Downward Initial State
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The initial state of RIPis settoxo=[1 7@ 1 0 ]T, while the final

stateisxy=[0 0 0 0 ]T. The control 7; in (9) is used to achieve
this control task, in which the parameters are

k=0.1,
1.6090 —8.5878  0.7694  —1.4376
—8.5878 147.8866 —11.3186 25.1413 (13)

0.7694 —11.3186 09806 —1.9023
—1.4376 25.1413  —1.9023  4.4263

P =

where P is calculated by solving the Lyapunov equation
ATP4+PA=—1I.
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(a) Control u =r;— Kx (b) Feedback control r;
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Figure 3: Results of Stability Control for Vertically Downward Initial State
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Introduction

Letxo=[1 1 1 0], x=[0 0 0 0] ,kinrandr,are
0.1 and 0.0009, respectively. The results are shown in Figure 4 and 5

=

5 10

Time(a.u.)

(b) System state x under u,

5
Time(a.u.)

(a) System state x under u;
Figure 4: Results of Comparative Experiments
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Figure 5: Results of Comparative Experiments (cont.)

Stabilizing a Rotary Inverted Pendulum Based on Lyapunov Stability Theorem Jie WEN, Yuanhao SHI, Xiaol



Introduction Viathematical M sign o ols p ents Conclusions

@00

» The logarithmic function has higher numerical accuracy and
faster convergence speed than quadratic function.

» The control designed can also achieve the swing-up control of
RIP.

» Further works

» Lyapunov control method is applicable to nonlinear system, so the
nonlinear mathematical model of RIP can be considered as the
controlled system, and the stabilizing control laws are designed by
Lyapunov method.

» The robustness analyses in theory should be researched.

» The constructed logarithmic function can be used in other control
methods, such as the performance function in optimal control.
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Thank you for your attention!
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