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The optimization of boiler soot blowing is valuable not only from an
economic point of view, but also from the perspective of environment.

Contradiction

I If the operations of soot blowing are performed more frequently,
thinner soot leads to higher efficiency.

I The frequent operation of soot blowing will also give rise to a
waste of steam and increased maintenance cost.

The goal of optimizing soot blowing for boiler systems is to optimize
the frequency of soot blowing or the start time and end time of soot
blowing so as to minimize the combined cost of fouling and soot
blowing operations.
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The most related literatures works focused on the establishment of
boiler model, fouling prediction and fouling assessment:

I Mathematical model

I Expert system

I Support Vector Machine

I Artificial Neural Networks

I Adaptive Neuro-Fuzzy Inference Systems

We focus on the optimization of soot blowing via HJB method.

I Central of optimal control theory

I Necessary and sufficient condition.

I Generalize to stochastic systems.
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Mathematical model of boiler soot blowing

I The boiler operation modes are classified as soot deposition,
denoted by 1, and soot blowing, denoted by 2.

I The boiler cycles between mode 1 and mode 2.

I Continuous time Markov process is constructed as the dynamics
of boiler.
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Mathematical model of boiler soot blowing

The transition rate λαβ from mode α to mode β satisfies the
conditions {

λαβ ≥ 0, if α 6= β

λαα =−∑α 6=β λαβ , if α = β
(1)

Correspondingly, the transition rate matrix Q is defined as

Q =

[
−λ12 (t) λ12 (t)
λ21 (t) −λ21 (t)

]
=

[
−ωd (t) ωd (t)
ωb (t) −ωb (t)

]
(2)

where, λ12 (t) = ωd (t), ω
−1
d (t) is the soot deposition time;

λ21 (t) = ωb (t), ω
−1
b (t) is the soot blowing time.
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Mathematical model of boiler soot blowing

The transition probability matrix P is given by

P =

[
p11 p12
p21 p22

]
(3)

where,

pαβ = P(Θ(t+δ t) = β |Θ(t) = α) =

{
λαβ δ t+o(δ t) , α 6= β

1+λαβ δ t+o(δ t) , α = β

and lim
δ t→0

o(δ t)
δ t = 0 for all α,β ∈ B.
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Mathematical model of boiler soot blowing

The soot thickness of boiler is denoted as x(t), and satisfies the
following state equation

ẋ(t) = d (t)−b(t) (4)

where, b(t) is soot blowing rate and written as

b(t) =
{

0, Θ(t) = 1
krr (t),Θ(t) = 2

(5)

d (t) is soot deposition rate and written as

d (t) =
{

ξ e−µx(t),Θ(t) = 1
0, Θ(t) = 2

(6)

In our model, soot thickness is selected as the system state; soot
deposition time, soot blowing time and steam flow are the three
control variables.
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HJB Equation

The cost function is constructed as

J (α,x,ωd,ωb,r (t)) = E
{∞

∫
0

e−ρtG(α,x,ωd,ωb,r (t))dt

|x(0) = x,Θ(0) = α

} (7)

where, ρ is discount rate and

G(α,x,ωd,ωb,r (t)) = cbr (t) Ind(Θ(t) = 2)+g(x(t))

cb = Kkr

Ind(Θ(t) = α) =

{
1, if Θ(t) = α

0,otherwise
,α ∈ B

g(x(t)) = cdx(t)
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HJB Equation

Based on J (α,x,ωd,ωb,r) and the mathematical model, the problem
of soot blowing optimization is described as :

For the given soot thickness x and boiler mode α in the initial time,
to obtain the control policy (ωd,ωb,r) in the set of admissible control
policies

Γ(α) =
{
(ωd (·) ,ωb (·) ,r (·)) ∈ R3 : ω

min
d ≤ ωd (·)≤ ω

max
d ,

ω
min
b ≤ ωb (·)≤ ω

max
b ,rmin ≤ r (·)≤ rmax

} (8)

so as to minimize the cost function J (α,x,ωd,ωb) subject to the
constraints given by (1)-(6). Namely, the goal of this paper is to solve
the following optimal problem min

(ωd,ωb,r)∈Γ(α)
J (α,x,ωd,ωb,r)

s.t. (1)− (6)
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HJB Equation

J (α,x,ωd,ωb,r) can be rewritten as∗

J (α,x,ωd,ωb,r)=
∞

∫
0

e−ρt
(

G(α,x,ωd,ωb,r)+ ∑
β∈B

λαβ J (β ,x,ωd,ωb,r)
)

dt

(9)
and the corresponding value function is as follows

v(α,x) = inf
(ωd,ωb,r)∈Γ(α)

J (α,x,ωd,ωb,r) ,∀α ∈ B,x ∈ R (10)

Regarding the optimality principle, HJB equations can be written as

ρv(α,x) = min
(ωd,ωb,r)∈Γ(α)

{
G(α,x,ωd,ωb,r)

+ ∑
β∈B

λαβ v(β ,x)+ vx (α,x)(d (t)−b(t))
} (11)

∗J. G. Kimemia and S. B. Gershwin, An algorithm for the computer control of production in a flexible manufacturing system,
20th IEEE Conference on Decision and Control, vol. 138, pp. 628-633, 1981.
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Let control policy u = (ωd,ωb,r), then J (α,x,ωd,ωb,r) = J (α,x,u),
G(α,x,ωd,ωb,r) = G(α,x,u). The elementary properties of value
function v include:
I v is convex for x.

◦ J (α,x,u) is convex.
◦ v is convex for x.

I v(α,x) is locally Lipschitz for x.
◦ G(α,x,u) is locally Lipschitz.

◦ |v(α,x1)− v(α,x2)| ≤ C̃
(

1+ |x1|k + |x2|k
)
|x1− x2|.

Theorem 1

The HJB equation (11) has a single viscous solution, and v is the
single viscosity solution of the HJB equation.
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Proof.
The proof contains two parts:

1. v is a viscosity solution of HJB equation.

◦ v(α,x) is continuous and |v(α,x)| ≤ C
(

1+ |x|k
)

.
◦ v should be both a viscosity subsolution and a viscosity

supersolution.

2. HJB equation has unique viscosity solution.

◦ G(α,x,u) is locally Lipschitz and |G(α,x,u)| ≤ C
(

1+ |x|k
)

.
◦ Uniqueness.
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Let variable h represent the length of the finite difference interval of the soot
thickness x, then the first-order derivatives of the value function vx (α,x) can
be approximated as

vx (α,x) =
{ 1

h

(
vh (α,x+h)− vh (α,x)

)
, if d (t)> b(t)

1
h

(
vh (α,x)− vh (α,x−h)

)
, otherwise

(12)

Place (12) into (11), one can obtain

vh (α,x) = min
u∈Γh(α)

{
G(α,x,u)

Ωh (α,u)+ρ
+

1
1+ ρ

Ωh(α,u)

·

 ∑
β 6=α∈B

pβ (α,u)vh (β ,x)

+p+x (α,u)vh (α,x+h) Ind(d (t)−b(t)> 0)
+p−x (α,u)vh (α,x−h) Ind(d (t)−b(t)≤ 0)

} (13)

where, Ωh (α,u) = |λαα |+ |d(t)−b(t)|
h , pβ (α,u) =

λαβ

Ωh(α,u) ,

p+x (α,u) = d(t)−b(t)
hΩh(α,u) , p−x (α,u) = b(t)−d(t)

hΩh(α,u) .
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Theorem 2

If vh (α,x) is a solution of HJB equation (13), and there exists constant Cg
and κg such that 0≤ vh (α,x)≤ Cg

(
1+ |x|κg

)
, then lim

h→0
vh (α,x) = v(α,x)

For the control policy ϒ, define the operators Tϒ and T∗ which act on vh (α,x)
as

Tϒ

(
vh (α,x)

)
=

G(α,x,ϒ)
Ωh (α,ϒ)+ρ

+
1

1+ ρ

Ωh(α,ϒ)

·

 ∑
β 6=α∈B

pβ (α)vh (α,x)

+p+x (α,ϒ)vh (α,x+h) Ind(d (t)−b(t)> 0)
+p−x (α,ϒ)vh (α,x−h) Ind(d (t)−b(t)≤ 0)

 (14)

T∗
(
vh (α,x)

)
= min

ϒ∈Γh(α)

{
Tϒ

(
vh (α,x)

)}
(15)

Then, the equation (13) can be solved by Kushner’s Method.
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Algorithm 1 Kushner’s Method

Step 1: Set ε ∈ R+, where R+ represents the set of positive real
numbers. n := 1,

(
vh (α,x)

)n := 0,∀α,x.

Step 2: Let
(
vh (α,x)

)n−1 :=
(
vh (α,x)

)n
,∀α,x.

Step 3: Determine ϒn so that

Tϒn
(
vh (α,x)

)n−1
= T∗

(
vh (α,x)

)n−1(
vh (α,x)

)n
= T∗

(
vh (α,x)

)n−1 ,∀α,x

Step 4: Calculate

c̄ := min
∀α,∀x

{(
vh (α,x)

)n−
(
vh (α,x)

)n−1
}

c := max
∀α,∀x

{(
vh (α,x)

)n−
(
vh (α,x)

)n−1
}

cmin := ρ

1−ρ
c̄,cmax := ρ

1−ρ
c

If |cmax− cmin| ≤ ε , stop, ϒ∗ = ϒn; otherwise,(
vh (α,x)

)n
= Tϒn

(
vh (α,x)

)n−1
, n = n+1,

return to Step 2.
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The experiment parameters are shown in the following Table.

Symbols Description Value
ε criterion 0.001
hx step size of soot thickness 0.02
ρ discount rate 0.05

xmin minimum thickness of soot 0
xmax maximum thickness of soot 10
rmin minimum steam flow 0.5
rmax maximum steam flow 2.5
hr initial step size of steam flow 0.1
kr coefficient of soot blowing 0.1
ξ coefficient of soot deposition 0.5
µ coefficient of soot deposition 0.1
cd cost per unit time caused by soot deposition 0.5

ωbmin reciprocal of soot blowing maximum time 0.1
ωbmax reciprocal of soot blowing minimum time 10
ωdmin reciprocal of soot deposition maximum time 0.01
ωdmax reciprocal of soot deposition minimum time 1.0

K cost coefficient of soot blowing 5.0
hω d initial time step size of soot deposition 0.01
hω b initial time step size of soot blowing 0.01

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow J. Wen, Y. Shi, X. Pang, J. Jia, and J. Zeng
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Figure 1: Strategies under the parameters setting
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Figure 2: Taking steam flow r in [0.5,2.5] at each 0.05 interval
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I Construct a continuous time Markov process with two
modes as the model of boiler soot blowing.

I Propose a cost function and derive the HJB equation.

I Prove the elementary properties of value function.

I Apply Kushner’s method to solve the HJB equation.

I Verify the effectiveness of the proposed method via
numerical experiments.
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Thanks for your attention!
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Q&A
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