| Problem Statement |  |  |
|-------------------|--|--|
|                   |  |  |

## Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

## J. Wen<sup>1</sup>, Y. Shi<sup>1</sup>, X. Pang<sup>2</sup>, J. Jia<sup>1</sup>, and J. Zeng<sup>2</sup>

<sup>1</sup>School of Electrical and Control Engineering, North University of China

<sup>2</sup>School of Data Science and Technology, North University of China

wenjie015@gmail.com

## July 25, 2018, Wuhan, China

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

J. Wen, Y. Shi, X. Pang, J. Jia, and J. Zeng

医子宫医子宫

| 00000<br>0000 |  |  |
|---------------|--|--|

#### Outline



- Problem Statement
  - Mathematical model of boiler soot blowing
  - HJB Equation
- Properties of Value Function
- A Numerical Method
- 5 Numerical Experiments

## 6 Conclusions

> < = > < = >

A.

| Introduction |               |  |  |
|--------------|---------------|--|--|
| 00           | 00000<br>0000 |  |  |

# The optimization of boiler soot blowing is valuable not only from an economic point of view, but also from the perspective of environment.

### Contradiction

- If the operations of soot blowing are performed more frequently, thinner soot leads to higher efficiency.
- The frequent operation of soot blowing will also give rise to a waste of steam and increased maintenance cost.

The goal of optimizing soot blowing for boiler systems is to optimize the frequency of soot blowing or **the start time and end time of soot blowing** so as to minimize the combined cost of fouling and soot blowing operations.

- 4 同 1 4 三 1 4 三 1

| Introduction |               |    |     |    |     |
|--------------|---------------|----|-----|----|-----|
| 00           | 00000<br>0000 | 00 | 000 | 00 | 000 |

The optimization of boiler soot blowing is valuable not only from an economic point of view, but also from the perspective of environment.

## Contradiction

- If the operations of soot blowing are performed more frequently, thinner soot leads to higher efficiency.
- The frequent operation of soot blowing will also give rise to a waste of steam and increased maintenance cost.

The goal of optimizing soot blowing for boiler systems is to optimize the frequency of soot blowing or **the start time and end time of soot blowing** so as to minimize the combined cost of fouling and soot blowing operations.

イロト イロト イヨト イヨト

| Introduction |               |    |     |    |     |
|--------------|---------------|----|-----|----|-----|
| 00           | 00000<br>0000 | 00 | 000 | 00 | 000 |

The optimization of boiler soot blowing is valuable not only from an economic point of view, but also from the perspective of environment.

## Contradiction

- If the operations of soot blowing are performed more frequently, thinner soot leads to higher efficiency.
- The frequent operation of soot blowing will also give rise to a waste of steam and increased maintenance cost.

The goal of optimizing soot blowing for boiler systems is to optimize the frequency of soot blowing or **the start time and end time of soot blowing** so as to minimize the combined cost of fouling and soot blowing operations.

A (10) A (10)

| Introduction |               |  |  |
|--------------|---------------|--|--|
| 00           | 00000<br>0000 |  |  |

The most related literatures works focused on the establishment of boiler model, fouling prediction and fouling assessment:

- Mathematical model
- Expert system
- Support Vector Machine
- Artificial Neural Networks
- Adaptive Neuro-Fuzzy Inference Systems

We focus on the optimization of soot blowing via HJB method.

- Central of optimal control theory
- Necessary and sufficient condition.
- Generalize to **stochastic systems**.

伺 ト イヨ ト イヨ ト

| Introduction |               |  |  |
|--------------|---------------|--|--|
| 00           | 00000<br>0000 |  |  |

The most related literatures works focused on the establishment of boiler model, fouling prediction and fouling assessment:

- Mathematical model
- Expert system
- Support Vector Machine
- Artificial Neural Networks
- Adaptive Neuro-Fuzzy Inference Systems

We focus on the optimization of soot blowing via HJB method.

- Central of optimal control theory
- Necessary and sufficient condition.
- Generalize to stochastic systems.

> < = > < = >

| Problem Statement     |  |  |
|-----------------------|--|--|
| • <b>0000</b><br>0000 |  |  |

#### Outline

## Introduction

- Problem Statement
  - Mathematical model of boiler soot blowing
  - HJB Equation
- Properties of Value Function
- 4 Numerical Method
- 5 Numerical Experiments

## 6 Conclusions

伺 ト イヨ ト イヨ ト

| Problem Statement |  |  |
|-------------------|--|--|
| 0000<br>0000      |  |  |

- The boiler operation modes are classified as soot deposition, denoted by 1, and soot blowing, denoted by 2.
- The boiler **cycles** between mode 1 and mode 2.
- Continuous time Markov process is constructed as the dynamics of boiler.

イロト イポト イヨト イヨト

| Problem Statement |  |  |
|-------------------|--|--|
| 0000<br>0000      |  |  |

- The boiler operation modes are classified as soot deposition, denoted by 1, and soot blowing, denoted by 2.
- The boiler cycles between mode 1 and mode 2.
- Continuous time Markov process is constructed as the dynamics of boiler.

イロト イポト イヨト イヨト

| Problem Statement |  |  |
|-------------------|--|--|
| 0000              |  |  |

- The boiler operation modes are classified as soot deposition, denoted by 1, and soot blowing, denoted by 2.
- The boiler cycles between mode 1 and mode 2.
- Continuous time Markov process is constructed as the dynamics of boiler.

< □ > < 同 > < 回 > < 回 > < 回 >

| Problem Statement |  |  |
|-------------------|--|--|
| 00000             |  |  |
| 0000              |  |  |

The transition rate  $\lambda_{\alpha\beta}$  from mode  $\alpha$  to mode  $\beta$  satisfies the conditions

$$\begin{cases} \lambda_{\alpha\beta} \ge 0, \text{ if } \alpha \neq \beta \\ \lambda_{\alpha\alpha} = -\sum_{\alpha \neq \beta} \lambda_{\alpha\beta}, \text{ if } \alpha = \beta \end{cases}$$
(1)

Correspondingly, the transition rate matrix Q is defined as

$$Q = \begin{bmatrix} -\lambda_{12}(t) & \lambda_{12}(t) \\ \lambda_{21}(t) & -\lambda_{21}(t) \end{bmatrix} = \begin{bmatrix} -\omega_d(t) & \omega_d(t) \\ \omega_b(t) & -\omega_b(t) \end{bmatrix}$$
(2)

where,  $\lambda_{12}(t) = \omega_d(t)$ ,  $\omega_d^{-1}(t)$  is the soot deposition time;  $\lambda_{21}(t) = \omega_b(t)$ ,  $\omega_b^{-1}(t)$  is the soot blowing time.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| Problem Statement |  |  |
|-------------------|--|--|
| 00000             |  |  |
| 0000              |  |  |

The transition probability matrix *P* is given by

$$P = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$
(3)

where,

$$p_{\alpha\beta} = \mathbf{P}(\Theta(t+\delta t) = \beta | \Theta(t) = \alpha) = \begin{cases} \lambda_{\alpha\beta} \, \delta t + o(\delta t), & \alpha \neq \beta \\ 1 + \lambda_{\alpha\beta} \, \delta t + o(\delta t), & \alpha = \beta \end{cases}$$

and 
$$\lim_{\delta t \to 0} \frac{o(\delta t)}{\delta t} = 0$$
 for all  $\alpha, \beta \in B$ .  

$$\dots \dots \frac{\omega_d^{-1}(t)}{\sum_{soot \text{ deposition blowing}} soot} \frac{r}{\omega_d^{-1}(t)} + \frac{\sigma_d^{-1}(t)}{\sum_{b \in B} soot} + \frac{\sigma_d^{-1}(t)}{\sum_{b \in B} \sigma_d^{-1}(t)} + \frac{\sigma_d^{-1}(t)}{\sum_{b \in B} \sigma_d^{-1}(t)$$

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

э

<ロト < 四ト < 三ト < 三ト

| Problem Statement |  |  |
|-------------------|--|--|
| 00000             |  |  |

The **soot thickness** of boiler is denoted as x(t), and satisfies the following state equation

$$\dot{x}(t) = d(t) - b(t) \tag{4}$$

where, b(t) is soot blowing rate and written as

$$b(t) = \begin{cases} 0, \ \Theta(t) = 1\\ k_r r(t), \Theta(t) = 2 \end{cases}$$
(5)

d(t) is soot deposition rate and written as

$$d(t) = \begin{cases} \xi e^{-\mu x(t)}, \Theta(t) = 1\\ 0, \quad \Theta(t) = 2 \end{cases}$$
(6)

In our model, **soot thickness** is selected as the system state; **soot deposition time**, **soot blowing time** and **steam flow** are the three control variables.

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

| Problem Statement |  |  |
|-------------------|--|--|
| 00000             |  |  |

The **soot thickness** of boiler is denoted as x(t), and satisfies the following state equation

$$\dot{x}(t) = d(t) - b(t) \tag{4}$$

where, b(t) is soot blowing rate and written as

$$b(t) = \begin{cases} 0, \ \Theta(t) = 1\\ k_r r(t), \Theta(t) = 2 \end{cases}$$
(5)

d(t) is soot deposition rate and written as

$$d(t) = \begin{cases} \xi e^{-\mu x(t)}, \Theta(t) = 1\\ 0, \quad \Theta(t) = 2 \end{cases}$$
(6)

In our model, **soot thickness** is selected as the system state; **soot deposition time**, **soot blowing time** and **steam flow** are the three control variables.

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

| Problem Statement |  |  |
|-------------------|--|--|
| 00000<br>0000     |  |  |

#### Outline

## Introduction

#### Problem Statement

Mathematical model of boiler soot blowing

## HJB Equation

- Properties of Value Function
- 4 Numerical Method
- 5 Numerical Experiments

## 6 Conclusions

伺 ト イヨ ト イヨ ト

| Problem Statement |  |  |
|-------------------|--|--|
| 00000<br>0000     |  |  |

The cost function is constructed as

$$J(\alpha, x, \omega_d, \omega_b, r(t)) = \mathbb{E}\left\{\int_0^\infty e^{-\rho t} G(\alpha, x, \omega_d, \omega_b, r(t)) dt | x(0) = x, \Theta(0) = \alpha\right\}$$
(7)

where, ho is discount rate and

$$G(\boldsymbol{\alpha}, \boldsymbol{x}, \boldsymbol{\omega}_{d}, \boldsymbol{\omega}_{b}, \boldsymbol{r}(t)) = c_{b}\boldsymbol{r}(t) \operatorname{Ind}\left(\boldsymbol{\Theta}(t) = 2\right) + g\left(\boldsymbol{x}(t)\right)$$

$$c_b = Kk_r$$
  
Ind  $(\Theta(t) = \alpha) = \begin{cases} 1, \text{ if } \Theta(t) = \alpha \\ 0, \text{ otherwise} \end{cases}, \alpha \in B$ 

$$g(x(t)) = c_d x(t)$$

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

2

<ロト < 四ト < 三ト < 三ト

| Problem Statement |  |  |
|-------------------|--|--|
| 00000<br>0000     |  |  |

Based on  $J(\alpha, x, \omega_d, \omega_b, r)$  and the mathematical model, the problem of soot blowing optimization is described as :

For the given soot thickness *x* and boiler mode  $\alpha$  in the initial time, to obtain the control policy  $(\omega_d, \omega_b, r)$  in the set of admissible control policies

$$\Gamma(\alpha) = \left\{ (\omega_d(\cdot), \omega_b(\cdot), r(\cdot)) \in \mathbb{R}^3 : \omega_d^{min} \le \omega_d(\cdot) \le \omega_d^{max}, \\ \omega_b^{min} \le \omega_b(\cdot) \le \omega_b^{max}, r_{min} \le r(\cdot) \le r_{max} \right\}$$
(8)

so as to minimize the cost function  $J(\alpha, x, \omega_d, \omega_b)$  subject to the constraints given by (1)-(6). Namely, the goal of this paper is to solve the following optimal problem

$$\begin{cases} \min_{\substack{(\omega_d,\omega_b,r)\in\Gamma(\alpha)}} J(\alpha,x,\omega_d,\omega_b,r)\\ s.t. \quad (1)-(6) \end{cases}$$

э

< ロ ト < 同 ト < 三 ト < 三 ト -

| Problem Statement |  |  |
|-------------------|--|--|
| 00000<br>0000     |  |  |

 $J(\alpha, x, \omega_d, \omega_b, r)$  can be rewritten as<sup>\*</sup>

$$J(\alpha, x, \omega_d, \omega_b, r) = \int_0^\infty e^{-\rho t} \Big( G(\alpha, x, \omega_d, \omega_b, r) + \sum_{\beta \in B} \lambda_{\alpha\beta} J(\beta, x, \omega_d, \omega_b, r) \Big) dt$$
(9)

#### and the corresponding value function is as follows

$$v(\alpha, x) = \inf_{(\omega_d, \omega_b, r) \in \Gamma(\alpha)} J(\alpha, x, \omega_d, \omega_b, r), \forall \alpha \in B, x \in \mathbb{R}$$
(10)

Regarding the optimality principle, HJB equations can be written as

$$\rho v(\alpha, x) = \min_{(\omega_d, \omega_b, r) \in \Gamma(\alpha)} \left\{ G(\alpha, x, \omega_d, \omega_b, r) + \sum_{\beta \in B} \lambda_{\alpha\beta} v(\beta, x) + v_x(\alpha, x) (d(t) - b(t)) \right\}$$
(11)

\*J. G. Kimemia and S. B. Gershwin, An algorithm for the computer control of production in a flexible manufacturing system, 20th IEEE Conference on Decision and Control, vol. 138, pp. 628-633, 1981.

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

| Problem Statement |  |  |
|-------------------|--|--|
| 00000<br>0000     |  |  |

 $J(\alpha, x, \omega_d, \omega_b, r)$  can be rewritten as<sup>\*</sup>

$$J(\alpha, x, \omega_d, \omega_b, r) = \int_0^\infty e^{-\rho t} \Big( G(\alpha, x, \omega_d, \omega_b, r) + \sum_{\beta \in B} \lambda_{\alpha\beta} J(\beta, x, \omega_d, \omega_b, r) \Big) dt$$
(9)

and the corresponding value function is as follows

$$v(\alpha, x) = \inf_{(\omega_d, \omega_b, r) \in \Gamma(\alpha)} J(\alpha, x, \omega_d, \omega_b, r), \forall \alpha \in B, x \in \mathbb{R}$$
(10)

Regarding the optimality principle, HJB equations can be written as

$$\rho v(\alpha, x) = \min_{(\omega_d, \omega_b, r) \in \Gamma(\alpha)} \left\{ G(\alpha, x, \omega_d, \omega_b, r) + \sum_{\beta \in B} \lambda_{\alpha\beta} v(\beta, x) + v_x(\alpha, x) (d(t) - b(t)) \right\}$$
(11)

\*J. G. Kimemia and S. B. Gershwin, An algorithm for the computer control of production in a flexible manufacturing system, 20th IEEE Conference on Decision and Control, vol. 138, pp. 628-633, 1981.

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

|               | Properties of Value Function |  |  |
|---------------|------------------------------|--|--|
| 00000<br>0000 | ● <b>○</b>                   |  |  |

Let control policy  $u = (\omega_d, \omega_b, r)$ , then  $J(\alpha, x, \omega_d, \omega_b, r) = J(\alpha, x, u)$ ,  $G(\alpha, x, \omega_d, \omega_b, r) = G(\alpha, x, u)$ . The elementary properties of value function v include:

v is convex for x.

•  $J(\alpha, x, u)$  is convex.

• v is convex for x.

 $\triangleright$   $v(\alpha, x)$  is **locally Lipschitz** for *x*.

- $G(\alpha, x, u)$  is locally Lipschitz.
- $|v(\alpha, x_1) v(\alpha, x_2)| \le \tilde{C} \left(1 + |x_1|^k + |x_2|^k\right) |x_1 x_2|.$

## Theorem 1

The HJB equation (11) has a single viscous solution, and v is the single viscosity solution of the HJB equation.

|               | Properties of Value Function |  |  |
|---------------|------------------------------|--|--|
| 00000<br>0000 | • <b>o</b>                   |  |  |

Let control policy  $u = (\omega_d, \omega_b, r)$ , then  $J(\alpha, x, \omega_d, \omega_b, r) = J(\alpha, x, u)$ ,  $G(\alpha, x, \omega_d, \omega_b, r) = G(\alpha, x, u)$ . The elementary properties of value function v include:

v is convex for x.

•  $J(\alpha, x, u)$  is convex.

• v is convex for x.

•  $v(\alpha, x)$  is locally Lipschitz for x.

•  $G(\alpha, x, u)$  is locally Lipschitz.

• 
$$|v(\alpha, x_1) - v(\alpha, x_2)| \le \tilde{C} \left(1 + |x_1|^k + |x_2|^k\right) |x_1 - x_2|.$$

#### Theorem 1

The HJB equation (11) has a single viscous solution, and v is the single viscosity solution of the HJB equation.

|               | Properties of Value Function |  |  |
|---------------|------------------------------|--|--|
| 00000<br>0000 | • <b>o</b>                   |  |  |

Let control policy  $u = (\omega_d, \omega_b, r)$ , then  $J(\alpha, x, \omega_d, \omega_b, r) = J(\alpha, x, u)$ ,  $G(\alpha, x, \omega_d, \omega_b, r) = G(\alpha, x, u)$ . The elementary properties of value function v include:

v is convex for x.

•  $J(\alpha, x, u)$  is convex.

• *v* is convex for *x*.

•  $v(\alpha, x)$  is locally Lipschitz for x.

•  $G(\alpha, x, u)$  is locally Lipschitz.

• 
$$|v(\alpha, x_1) - v(\alpha, x_2)| \le \tilde{C} \left(1 + |x_1|^k + |x_2|^k\right) |x_1 - x_2|.$$

## Theorem 1

The HJB equation (11) has a single viscous solution, and v is the single viscosity solution of the HJB equation.

|               | Properties of Value Function |  |  |
|---------------|------------------------------|--|--|
| 00000<br>0000 | 00                           |  |  |

## Proof.

The proof contains two parts:

- 1. v is a viscosity solution of HJB equation.
  - $v(\alpha, x)$  is continuous and  $|v(\alpha, x)| \le C(1+|x|^k)$ .
  - *v* should be both a viscosity subsolution and a viscosity supersolution.
- 2. HJB equation has unique viscosity solution.
  - $G(\alpha, x, u)$  is locally Lipschitz and  $|G(\alpha, x, u)| \le C(1 + |x|^k)$
  - Uniqueness.

|               | Properties of Value Function |  |  |
|---------------|------------------------------|--|--|
| 00000<br>0000 | 00                           |  |  |

## Proof.

The proof contains two parts:

- 1. v is a viscosity solution of HJB equation.
  - $v(\alpha, x)$  is continuous and  $|v(\alpha, x)| \le C(1+|x|^k)$ .
  - *v* should be both a viscosity subsolution and a viscosity supersolution.
- 2. HJB equation has unique viscosity solution.
  - $G(\alpha, x, u)$  is locally Lipschitz and  $|G(\alpha, x, u)| \le C(1 + |x|^k)$ .
  - Uniqueness.

|               | Numerical Method |  |
|---------------|------------------|--|
| 00000<br>0000 | 000              |  |

Let variable *h* represent the length of the finite difference interval of the soot thickness *x*, then the first-order derivatives of the value function  $v_x(\alpha, x)$  can be approximated as

$$v_{x}(\alpha, x) = \begin{cases} \frac{1}{h} \left( v^{h}(\alpha, x+h) - v^{h}(\alpha, x) \right), \text{ if } d(t) > b(t) \\ \frac{1}{h} \left( v^{h}(\alpha, x) - v^{h}(\alpha, x-h) \right), \text{ otherwise} \end{cases}$$
(12)

Place (12) into (11), one can obtain

$$v^{h}(\alpha, x) = \min_{u \in \Gamma^{h}(\alpha)} \left\{ \frac{G(\alpha, x, u)}{\Omega^{h}(\alpha, u) + \rho} + \frac{1}{1 + \frac{\rho}{\Omega^{h}(\alpha, u)}} \cdot \left( \sum_{\substack{\beta \neq \alpha \in B \\ +p_{x}^{+}(\alpha, u) v^{h}(\alpha, x + h) \operatorname{Ind}(d(t) - b(t) > 0) \\ +p_{x}^{-}(\alpha, u) v^{h}(\alpha, x - h) \operatorname{Ind}(d(t) - b(t) \le 0)} \right) \right\}$$
(13)

where,  $\Omega^{h}(\alpha, u) = |\lambda_{\alpha\alpha}| + \frac{|d(t) - b(t)|}{h}, p^{\beta}(\alpha, u) = \frac{\lambda_{\alpha\beta}}{\Omega^{h}(\alpha, u)},$  $p_{x}^{+}(\alpha, u) = \frac{d(t) - b(t)}{h\Omega^{h}(\alpha, u)}, p_{x}^{-}(\alpha, u) = \frac{b(t) - d(t)}{h\Omega^{h}(\alpha, u)}.$ 

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

|               | Numerical Method |  |
|---------------|------------------|--|
| 00000<br>0000 | 000              |  |

Let variable *h* represent the length of the finite difference interval of the soot thickness *x*, then the first-order derivatives of the value function  $v_x(\alpha, x)$  can be approximated as

$$v_{x}(\alpha, x) = \begin{cases} \frac{1}{h} \left( v^{h}(\alpha, x+h) - v^{h}(\alpha, x) \right), \text{ if } d(t) > b(t) \\ \frac{1}{h} \left( v^{h}(\alpha, x) - v^{h}(\alpha, x-h) \right), \text{ otherwise} \end{cases}$$
(12)

Place (12) into (11), one can obtain

$$\nu^{h}(\alpha, x) = \min_{u \in \Gamma^{h}(\alpha)} \left\{ \frac{G(\alpha, x, u)}{\Omega^{h}(\alpha, u) + \rho} + \frac{1}{1 + \frac{\rho}{\Omega^{h}(\alpha, u)}} \cdot \left( \sum_{\substack{\beta \neq \alpha \in B \\ +p_{x}^{+}(\alpha, u) \nu^{h}(\alpha, x + h) \operatorname{Ind}(d(t) - b(t) > 0) \\ +p_{x}^{-}(\alpha, u) \nu^{h}(\alpha, x - h) \operatorname{Ind}(d(t) - b(t) \le 0)} \right) \right\}$$
(13)

where, 
$$\Omega^{h}(\alpha, u) = |\lambda_{\alpha\alpha}| + \frac{|d(t)-b(t)|}{h}$$
,  $p^{\beta}(\alpha, u) = \frac{\lambda_{\alpha\beta}}{\Omega^{h}(\alpha, u)}$ ,  
 $p_{x}^{+}(\alpha, u) = \frac{d(t)-b(t)}{h\Omega^{h}(\alpha, u)}$ ,  $p_{x}^{-}(\alpha, u) = \frac{b(t)-d(t)}{h\Omega^{h}(\alpha, u)}$ .

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

• • = • • =

|       | Numerical Method |  |
|-------|------------------|--|
| 00000 | 000              |  |

#### Theorem 2

If  $v^{h}(\alpha, x)$  is a solution of HJB equation (13), and there exists constant  $C_{g}$  and  $\kappa_{g}$  such that  $0 \leq v^{h}(\alpha, x) \leq C_{g} \left(1 + |x|^{\kappa_{g}}\right)$ , then  $\lim_{h \to 0} v^{h}(\alpha, x) = v(\alpha, x)$ 

For the control policy  $\Upsilon$ , define the operators  $T_{\Upsilon}$  and  $T^*$  which act on  $v^h(\alpha, x)$  as

$$T_{\Upsilon}\left(v^{h}(\alpha, x)\right) = \frac{G(\alpha, x, \Upsilon)}{\Omega^{h}(\alpha, \Upsilon) + \rho} + \frac{1}{1 + \frac{\rho}{\Omega^{h}(\alpha, \Upsilon)}} \cdot \left( \begin{array}{c} \sum_{\substack{\beta \neq \alpha \in B \\ +p_{x}^{+}(\alpha, \Upsilon) v^{h}(\alpha, x + h) \operatorname{Ind}\left(d\left(t\right) - b\left(t\right) > 0\right) \\ +p_{x}^{-}(\alpha, \Upsilon) v^{h}(\alpha, x - h) \operatorname{Ind}\left(d\left(t\right) - b\left(t\right) \le 0\right) \end{array} \right)$$
(14)  
$$T^{*}\left(v^{h}(\alpha, x)\right) = \min_{\Upsilon \in \Gamma^{h}(\alpha)} \left\{ T_{\Upsilon}\left(v^{h}(\alpha, x)\right) \right\}$$
(15)

Then, the equation (13) can be solved by Kushner's Method.

4 1 1 1 4 1

|               | Numerical Method |  |
|---------------|------------------|--|
| 00000<br>0000 | 000              |  |

#### Algorithm 1 Kushner's Method

Step 1: Set  $\varepsilon \in \mathbb{R}^+$ , where  $\mathbb{R}^+$  represents the set of positive real numbers. n := 1,  $(v^h(\alpha, x))^n := 0, \forall \alpha, x$ . Step 2: Let  $(v^h(\alpha, x))^{n-1} := (v^h(\alpha, x))^n, \forall \alpha, x$ . Step 3: Determine  $\Upsilon^n$  so that  $T_{\Upsilon^n}(v^h(\alpha, x))^{n-1} = T^*(v^h(\alpha, x))^{n-1}$ ,  $\forall \alpha, x$  $(v^h(\alpha, x))^n = T^*(v^h(\alpha, x))^{n-1}$ ,  $\forall \alpha, x$ 

Step 4: Calculate

$$\bar{c} := \min_{\forall \alpha, \forall x} \left\{ \left( v^{h}\left(\alpha, x\right) \right)^{n} - \left( v^{h}\left(\alpha, x\right) \right)^{n-1} \right\}$$

$$\underline{c} := \max_{\forall \alpha, \forall x} \left\{ \left( v^{h}\left(\alpha, x\right) \right)^{n} - \left( v^{h}\left(\alpha, x\right) \right)^{n-1} \right\}$$

$$c_{min} := \frac{\rho}{1-\rho} \bar{c}, c_{max} := \frac{\rho}{1-\rho} \underline{c}$$
If  $|c_{max} - c_{min}| \leq \varepsilon$ , stop,  $\Upsilon^{*} = \Upsilon^{n}$ ; otherwise,  
 $\left( v^{h}\left(\alpha, x\right) \right)^{n} = T_{\Upsilon^{n}} \left( v^{h}\left(\alpha, x\right) \right)^{n-1}, n = n+1$ ,  
return to **Step 2**.

|       |  | Numerical Experiments |  |
|-------|--|-----------------------|--|
| 00000 |  | 00                    |  |

#### The experiment parameters are shown in the following Table.

| Symbols          | Description                                  | Value |
|------------------|----------------------------------------------|-------|
| ε                | criterion                                    | 0.001 |
| $h_x$            | step size of soot thickness                  | 0.02  |
| ρ                | discount rate                                | 0.05  |
| x <sub>min</sub> | minimum thickness of soot                    | 0     |
| x <sub>max</sub> | maximum thickness of soot                    | 10    |
| r <sub>min</sub> | minimum steam flow                           | 0.5   |
| r <sub>max</sub> | maximum steam flow                           | 2.5   |
| h <sub>r</sub>   | initial step size of steam flow              | 0.1   |
| k <sub>r</sub>   | coefficient of soot blowing                  | 0.1   |
| ξ                | coefficient of soot deposition               | 0.5   |
| μ                | coefficient of soot deposition               | 0.1   |
| c <sub>d</sub>   | cost per unit time caused by soot deposition | 0.5   |
| $\omega_{bmin}$  | reciprocal of soot blowing maximum time      | 0.1   |
| $\omega_{bmax}$  | reciprocal of soot blowing minimum time      | 10    |
| $\omega_{dmin}$  | reciprocal of soot deposition maximum time   | 0.01  |
| $\omega_{dmax}$  | reciprocal of soot deposition minimum time   | 1.0   |
| K                | cost coefficient of soot blowing             | 5.0   |
| $h_{\omega_d}$   | initial time step size of soot deposition    | 0.01  |
| $h_{\omega b}$   | initial time step size of soot blowing       | 0.01  |

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

イロト イポト イヨト イヨ



#### Figure 1: Strategies under the parameters setting



Figure 2: Taking steam flow r in [0.5, 2.5] at each 0.05 interval

э

イロン イ理 とく ヨン イヨン

| Problem Statement |  | Conclusions<br>●○○ |
|-------------------|--|--------------------|
|                   |  |                    |

- Construct a continuous time Markov process with two modes as the model of boiler soot blowing.
- Propose a cost function and derive the HJB equation.
- Prove the elementary properties of value function.
- Apply Kushner's method to solve the HJB equation.
- Verify the effectiveness of the proposed method via numerical experiments.

| Problem Statement |  | Conclusions<br>●○○ |
|-------------------|--|--------------------|
|                   |  |                    |

- Construct a continuous time Markov process with two modes as the model of boiler soot blowing.
- Propose a cost function and derive the HJB equation.
- Prove the elementary properties of value function.
- Apply Kushner's method to solve the HJB equation.
- Verify the effectiveness of the proposed method via numerical experiments.

| Problem Statement |  | Conclusions<br>●OO |
|-------------------|--|--------------------|
|                   |  |                    |

- Construct a continuous time Markov process with two modes as the model of boiler soot blowing.
- Propose a cost function and derive the HJB equation.
- Prove the elementary properties of value function.
- Apply Kushner's method to solve the HJB equation.
- Verify the effectiveness of the proposed method via numerical experiments.

| Problem Statement |  | Conclusions<br>●OO |
|-------------------|--|--------------------|
|                   |  |                    |

- Construct a continuous time Markov process with two modes as the model of boiler soot blowing.
- Propose a cost function and derive the HJB equation.
- Prove the elementary properties of value function.
- Apply Kushner's method to solve the HJB equation.
- Verify the effectiveness of the proposed method via numerical experiments.

A = A A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

| Problem Statement |  | Conclusions<br>●OO |
|-------------------|--|--------------------|
|                   |  |                    |

- Construct a continuous time Markov process with two modes as the model of boiler soot blowing.
- Propose a cost function and derive the HJB equation.
- Prove the elementary properties of value function.
- Apply Kushner's method to solve the HJB equation.
- Verify the effectiveness of the proposed method via numerical experiments.

< ∃ >

|               |  | Conclusions |
|---------------|--|-------------|
| 00000<br>0000 |  | 000         |

## Thanks for your attention!

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

J. Wen, Y. Shi, X. Pang, J. Jia, and J. Zeng

.∋...>

| Problem Statement |  | Conclusions<br>○○● |
|-------------------|--|--------------------|
| 0000              |  |                    |

# Q&A

Optimal Soot Blowing Strategies in Boiler Systems with Variable Steam Flow

J. Wen, Y. Shi, X. Pang, J. Jia, and J. Zeng

Э.