Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

Levitation Control of Maglev Systems Based on Cascade Control

Jie Wen^{1,2}, Jikuo Wu¹, and Yukai Tian²

¹Department of Automation, North University of China

²School of Electrical and Control Engineering, North University of China

wenjie015@gmail.com

August 30, 2022, Datong, China

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

Outline

Introduction

- 2 Model of Levitation Systems
- 3 Controllers Design
 - Design of Sliding Mode Controller
 - Design of Fuzzy PID Controller
- 4 Numerical Simulations
 - Stable Levitation Experiments
 - Robustness Experiments

Conclusions

Introduction ●○	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions
repuls no me	v trains rely on elec ion to levitate and g <mark>chanical contact</mark> be hat maglev trains be	uide the train or	n the track, achiev and the ground tra	ing ack,

The levitation system of maglev trains is a complex nonlinear system with open-loop instability, susceptibility to interference, strong coupling.

The traditional PID control has been difficult to meet the requirements of accuracy and robustness of levitation control for the increasing train speed.

ntroduction ●O	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions
repuls no me	ev trains rely on election to levitate and g sion to levitate and g echanical contact be that maglev trains be	uide the train or tween the train	n the track, achiev and the ground tra	ing ack,

The levitation system of maglev trains is a complex nonlinear system with open-loop instability, susceptibility to interference, strong coupling.

The traditional PID control has been difficult to meet the requirements of accuracy and robustness of levitation control for the increasing train speed.

ntroduction ∋⊙	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions 000
repul no m	ev trains rely on elec sion to levitate and g echanical contact be that maglev trains be	uide the train or	n the track, achiev and the ground tra	ing ack,

The levitation system of maglev trains is a complex nonlinear system with open-loop instability, susceptibility to interference, strong coupling.

The traditional PID control has been difficult to meet the requirements of accuracy and robustness of levitation control for the increasing train speed.

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

The method of designing controllers for maglev systems

- Local linearization near the equilibrium point, and applying the design approach for linear systems
 - Fuzzy control
 - Model-free adaptive control
 - Stochastic linear quadratic optimal control
- Nonlinear control methods
 - Neural network
 - Backstepping control
 - \blacktriangleright H_{∞} control

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

The method of designing controllers for maglev systems

- Local linearization near the equilibrium point, and applying the design approach for linear systems
 - Fuzzy control
 - Model-free adaptive control
 - Stochastic linear quadratic optimal control
- Nonlinear control methods
 - Neural network
 - Backstepping control
 - ► H_∞ control

Introduction	Model of Levitation Systems ●O	Controllers Design	Numerical Simulations	Conclusions

Mathematical model

The dynamic equation of the electromagnet and the electrical equation of the electromagnet coil are

$$m\ddot{x} = mg - F$$

$$U = Ri + \frac{2C}{x}\dot{i} - \frac{2Ci}{x^2}\dot{x}$$
(1)
where, $F = C\frac{i^2}{x^2}, C = \frac{\mu_0 N^2 A}{4}$.

Figure 1: Schematic diagram of levitation systems for maglev train.

Levitation Control of Maglev Systems Based on Cascade Control

э

Introduction	Model of Levitation Systems ○●	Controllers Design	Numerical Simulations	Conclusions
Control st	ructure			

The levitation system is divided into **electromagnetic system** and **motion system**, and the **cascade control strategy** is used.

- Use sliding mode control to obtain the desired current *i_d* according to the desired gap *x_d* and actual gap *x*
- Apply fuzzy PID control to regulate the control voltage U based on the error between i_d and actual current i to make i tend to i_d

Figure 2: Diagram of control structure for levitation systems.

< 回 > < 回 > < 回 >

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

Outline

Introduction

Controllers Design
 Design of Sliding Mode Controller
 Design of Fuzzy PID Controller

4 Numerical Simulations

- Stable Levitation Experiments
- Robustness Experiments

Conclusions

Sliding mode control is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal that forces the system to "slide" along a cross-section of the system's normal behavior.

The design of sliding mode controller contains two steps:

- Design the switching function s (x) so that the sliding mode determined by it is asymptotically stable and has good dynamic quality.
- Design the control law so that the arrival condition is satisfied, and the sliding mode is formed on the sliding mode surface s(x) = 0.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sliding mode control is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal that forces the system to "slide" along a cross-section of the system's normal behavior.

The design of sliding mode controller contains two steps:

- Design the switching function s (x) so that the sliding mode determined by it is asymptotically stable and has good dynamic quality.
- Design the **control law** so that the arrival condition is satisfied, and the sliding mode is formed on the sliding mode surface $s(\mathbf{x}) = 0$.

3

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

For the electromagnetic system, let $x_1 = x$, $x_2 = \dot{x}$, $u = i^2$, then the electromagnetic system can be described by

$$x_1 = x_2$$

$$\dot{x_2} = g - \frac{C}{mx_1^2}u$$
(2)

The linear switching function is selected as s(x), i.e.,

$$s(\mathbf{x}) = c_1 (x_1 - x_d) + x_2, \ \mathbf{x} = [x_1, x_2]^{\mathrm{T}}$$
 (3)

In order to reduce the chattering of sliding mode control, we apply the **exponential reaching law**, i.e.,

$$\dot{s}(\boldsymbol{x}) = -\varepsilon \operatorname{sgn}(s(\boldsymbol{x})) - ks(\boldsymbol{x})$$
 (4)

< ロ > < 同 > < 三 > < 三 >

Introduction	Model of Levitation Systems	Controllers Design ○○○●○ ○○○○○○	Numerical Simulations	Conclusions

Let the Lyapunov function $V(\mathbf{x}) = \frac{1}{2}s^2(\mathbf{x})$, it is easy to obtain from (4) that

which means that the system state tends to the sliding mode surface.

On the other hand, from (2) and (3), we have

$$\dot{s}(\mathbf{x}) = c_1 (\dot{x}_1 - \dot{x}_d) + \dot{x}_2$$

= $c_1 x_2 + g - \frac{C}{m x_1^2} u$ (6)

< ロ > < 同 > < 回 > < 回 > < 回 >

Introduction	Model of Levitation Systems	Controllers Design ○○○●○ ○○○○○○	Numerical Simulations	Conclusions

Let the Lyapunov function $V(\mathbf{x}) = \frac{1}{2}s^2(\mathbf{x})$, it is easy to obtain from (4) that

which means that the system state tends to the sliding mode surface.

On the other hand, from (2) and (3), we have

$$\dot{s}(\mathbf{x}) = c_1 (\dot{x}_1 - \dot{x}_d) + \dot{x}_2 = c_1 x_2 + g - \frac{C}{m x_1^2} u$$
(6)

< ロト < 同ト < ヨト < ヨト

Introduction	Model of Levitation Systems	Controllers Design ○○○○○ ○○○○○○	Numerical Simulations	Conclusions

According to (4) and (6), we design the sliding mode control u as

$$u = \frac{mx_1^2}{C} \left(c_1 x_2 + \mathbf{g} + \varepsilon \operatorname{sgn}\left(s\left(\mathbf{x}\right)\right) + ks\left(\mathbf{x}\right) \right)$$
(7)

i.e.,

$$i_{d} = \sqrt{\frac{mx_{1}^{2}}{C} (c_{1}x_{2} + g + \varepsilon \operatorname{sgn}(s(\boldsymbol{x})) + ks(\boldsymbol{x}))} = \sqrt{\frac{mx^{2}}{C} (c_{1}\dot{x} + g + \varepsilon \operatorname{sgn}(c_{1}(x - x_{d}) + \dot{x}) + k(c_{1}(x - x_{d}) + \dot{x}))}$$
(8)

Levitation Control of Maglev Systems Based on Cascade Control

▶ 《 볼 ▶ 《 볼 ▶ 볼 ∽ 옷 (Jie Wen, Jikuo Wu, and Yukai Tian

• • • • • • • • • • • •

Introduction	Model of Levitation Systems	Controllers Design ●○○○○○	Numerical Simulations	Conclusions

Outline

Introduction

Controllers Design Design of Sliding Mode Controller

- Design of Fuzzy PID Controller
- 4 Numerical Simulations
 - Stable Levitation Experiments
 - Robustness Experiments

Conclusions

The diagram of fuzzy PID controller is shown in Fig. 3, where $\triangle K = \{ \triangle K_p, \triangle K_i, \triangle K_d \}$ represents the variation values of K_p, K_i, K_d obtained by fuzzy inference in the standard PID controller.

From Fig. 3, e, \dot{e} and $\triangle K$ are the input and output of fuzzy control, while $\triangle K$ is one of the inputs of the standard PID controller to regulate the parameters K_p , K_i , K_d .

Figure 3: Diagram of fuzzy PID controller.

Introduction	Model of Levitation Systems	Controllers Design ○○○○○ ○○●○○○	Numerical Simulations	Conclusions

According to the variation ranges of e and \dot{e} when the standard PID controller is used to control the single-point levitation system, the relevant parameters of the fuzzy PID controller are shown in Table 1.

Table 1: Parameters setting of fuzzy PID controller

Variable	е	ė	$\triangle K_p$	$\triangle K_i$	$\triangle K_d$		
Linguistic Variable	Ε	E_c	K_p	K _i	K _d		
Basic Domain	[-0.01, 0.01]	[-30, 30]	[-6, 6]	[-0.1, 0.1]	[-0.1, 0.1]		
Fuzzy Domain	[-3,-3]	[-3, -3]	[-6, -6]	[-1, -1]	[-1, -1]		
Fuzzy Subset		[NB NM NS ZO PS PM PB]					
Membership Function	Triangular function						
Quantization Factor	300	0.1	1	0.1	0.1		

く ロ ト く 同 ト く ヨ ト く ヨ

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

The fuzzy rule table for K_p is shown in Table 2.

Table 2: Fuzzy rule tables for K_p

e ė	NB	NM	NS	zo	PS	РМ	РВ
NB	PB	PB	PB	PM	PM	PS	ZO
NM	PB	PB	PB	PM	PM	PS	ZO
NS	PB	PM	PM	ZO	PS	ZO	PS
ZO	PM	PS	PS	NS	ZO	NS	NS
PS	PS	ZO	ZO	NS	NS	NM	NM
РМ	ZO	ZO	NS	NM	NM	NM	NB
PB	ZO	NS	NM	NM	NB	NB	NB

• • • • • • • • • • • •

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

The fuzzy rule table for K_i is shown in Table 3.

Table 3: Fuzzy rule tables for K_i

e ė	NB	NM	NS	zo	PS	РМ	РВ
NB	NB	NB	NM	NM	NS	ZO	ZO
NM	NB	NM	NM	NM	NS	ZO	ZO
NS	NM	NM	NS	ZO	ZO	PS	PS
ZO	NM	NS	ZO	ZO	PS	PS	PM
PS	NS	ZO	ZO	PS	PS	PM	PM
РМ	ZO	ZO	PS	PM	PM	PB	PB
PB	ZO	ZO	PM	PM	PB	PB	PB

• • • • • • • • • • • •

Introduction	Model of Levitation Systems	Controllers Design ○○○○○ ○○○○○●	Numerical Simulations	Conclusions

The fuzzy rule table for K_d is shown in Table 4.

Table 4: Fuzzy rule tables for K_d

e ė	NB	NM	NS	zo	PS	РМ	РВ
NB	PS	NS	NM	NB	NM	NM	PS
NM	PS	NS	NS	NM	NS	NM	ZO
NS	ZO	NS	ZO	NS	NS	NS	ZO
ZO	ZO	ZO	ZO	ZO	ZO	ZO	ZO
PS	ZO	PS	PS	PS	ZO	PS	PM
РМ	ZO	PS	PS	PM	PS	PS	PB
PB	ZO	PS	PM	PB	PS	PM	PB

< □ > < 同 > < 回 > < 回 > < 回

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

Outline

Introduction

- 2 Model of Levitation Systems
- Controllers Design
 Design of Sliding Mode Controller
 Design of Fuzzy PID Controller
- Numerical Simulations
 Stable Levitation Experiments
 - Robustness Experiments

Conclusions

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

Stable Levitation Experiments

The initial gap x_0 is set as 7 mm, the desired gap x_d is set as 3 mm. The system parameters of the levitation system are set as $R = 3.1 \Omega$, m = 14 Kg and $C = 7.8 \times 10^{-4}$, respectively.

The control parameters in switching mode controller are set as $c_1 = 1.5$, $\varepsilon = 0.001$ and k = 10, respectively.

Figure 4: Simulation model in Simulink.

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

Stable Levitation Experiments

Figure 5: Curves of the actual gap *x*.

000 00 <u>88888</u> 000	Introduction	Model of Levitation Systems			Conclusions
-------------------------	--------------	-----------------------------	--	--	-------------

Stable Levitation Experiments

Figure 6: Curves of $\triangle K$.

э

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

Outline

Introduction

- 2 Model of Levitation Systems
- Controllers Design
 Design of Sliding Mode Controller
 Design of Fuzzy PID Controller
- Numerical Simulations
 Stable Levitation Experiments
 - Robustness Experiments

Conclusions

-

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

Robustness Experiments

Figure 7: The results for different mass *m*.

イロト イポト イヨト イヨト

Introduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions

Robustness Experiments

Figure 8: The results for different desired gap x_d .

イロト イポト イヨト イヨト

ntroduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions ●○○
	Achieve the stable lev	vitation of the si	ngle-point levitatio	n

- Achieve the stable levitation of the single-point levitation system for maglev train by applying the cascade control.
 - Electromagnetic system: switching mode controller
 - Motion system: fuzzy PID controller

Further works.

- Cooperative control of multi-point levitation system
- Improvement of the designed controller for faster stable levitation
- Robustness analyses in theory

イロト イポト イラト イラ

ntroduction	Model of Levitation Systems	Controllers Design	Numerical Simulations	Conclusions ●○○
	Achieve the stable lev	vitation of the si	ngle-point levitatio	n

- Achieve the stable levitation of the single-point levitation system for maglev train by applying the cascade control.
 - Electromagnetic system: switching mode controller
 - Motion system: fuzzy PID controller

Further works.

- Cooperative control of multi-point levitation system
- Improvement of the designed controller for faster stable levitation
- Robustness analyses in theory

Thanks for your attention!

Levitation Control of Maglev Systems Based on Cascade Control

Jie Wen, Jikuo Wu, and Yukai Tian

イロト イポト イヨト イヨト

Conclusions

Q&A

Levitation Control of Maglev Systems Based on Cascade Control

Jie Wen, Jikuo Wu, and Yukai Tian

Э.

イロト イロト イヨト イヨト